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Abstract

In this paper, we study nonzero-sum separable games, which are continuous games
whose payoffs take a sum-of-products form. Included in this subclass are all finite
games and polynomial games. We investigate the structure of equilibria in separable
games. We show that these games admit finitely supported Nash equilibria. Motivated
by the bounds on the supports of mixed equilibria in two-player finite games in terms
of the ranks of the payoff matrices, we define the notion of the rank of an n-player
continuous game and use this to provide bounds on the cardinality of the support of
equilibrium strategies. We present a general characterization theorem that states that
a continuous game has finite rank if and only if it is separable. Using our rank results,
we present an efficient algorithm for computing approximate equilibria of two-player
separable games with fixed strategy spaces in time polynomial in the rank of the game.

1 Introduction

The structure and computation of equilibria in games with infinite strategy spaces have long
been recognized as complex. Even seemingly “good” games may possess only “bad” equi-
libria; Gross has constructed an example of a zero-sum game with rational utility functions
whose unique Nash equilibrium is for each player to play the Cantor measure [11, 13]. To
avoid such pathologies, Dresher, Karlin, and Shapley introduced the class of zero-sum sep-
arable games [9, 8, 14, 13]. These are games in which each player’s payoff can be written
as a sum of products of functions in each player’s strategy separately (e.g. as polynomials),
and it is known that every separable game admits a mixed strategy Nash equilibrium that is
finitely supported, i.e. all players randomize over a finite number of pure strategies. Parrilo
has shown that Nash equilibria of zero-sum games with polynomial utility functions can be
computed efficiently [19].
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In this paper, we study nonzero-sum separable games. We show that even in the nonzero-
sum case, separable games have the property that an equilibrium exists in finitely supported
mixed strategies. We then characterize the structure of these games and their Nash equilibria,
and also propose methods for computing (exact and approximate) equilibria.

Our first major contribution is to define and develop the concept of the rank of a con-
tinuous game, which we use to construct bounds on the number of strategies played in
equilibrium. In two-player finite games, Lipton et al. have recently shown that the ranks of
the payoff matrices provide such a bound [16]. Our new definition of rank generalizes this
one to allow for an arbitrary finite number of players (a problem explicitly left open in [16])
and infinite strategy spaces. We define the rank of a continuous game by introducing an
equivalence relation between mixed strategies called almost payoff equivalence. The rank is
the dimension of the mixed strategy space modulo this equivalence relation. Loosely speak-
ing, low-rank continuous games are those where the variation in each player’s payoff depends
only on a low-dimensional projection of the mixed strategies of the players. For example in
games with polynomial payoffs, the rank depends on the dimension of a projection of the
moment space.

We also show that a continuous game has finite rank if and only if it is separable. This
means that little can be said about the structure of equilibria in non-separable continuous
games and highlights the importance of separable games. We provide simple techniques
for evaluating the rank of separable games, which we specialize to games with polynomial
payoffs and finite games.

Our second set of results concern efficient computation of mixed strategy equilibria in
separable games. For n-player games, we provide a nonlinear optimization formulation, and
show that the optimal solutions of this problem correspond to the (generalized) moments
of exact Nash equilibria. This formulation generalizes the optimization formulation of Nash
equilibria of finite games presented by Başar and Olsder [1].

While the nonlinear optimization formulation for the computation of equilibria is tractable
for certain classes of separable games such as zero-sum polynomial games, the potential non-
convexity of the optimization problem makes it impractical in other cases. We therefore
supplement our computational results for exact mixed strategy equilibria with new meth-
ods for computing approximate mixed strategy equilibria. Using our rank results described
above, we can link the computation of mixed strategy equilibria to the appropriate dis-
cretization of the strategy space into finite actions. For two-person separable games, this
yields an efficient algorithm for computing approximate mixed strategy equilibria in time
polynomial in the rank of the game. This algorithm searches for finitely supported approxi-
mate equilibria by enumerating all possible supports, and relies on the fact that the search
can be limited to supports of size bounded by the rank of the game. For two-players, the set
of equilibria for a given support can be described by linear equations and inequalities 1.

Our work is related to a number of literatures. There has been considerable work on
the computation of equilibria in finite games. Lemke and Howson give a path-following al-

1With more than two players this description is no longer linear (or convex), so this algorithm does not
generalize to n-player games with n > 2.
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gorithm for two-player finite games which can be viewed as the simplex method for linear
programming operating with a different pivoting rule [15]. To find equilibria of games with
more players, Scarf constructs a simplicial subdivision algorithm which also works for more
general fixed point problems [22]. These methods rely on the polyhedral structure of the
mixed strategy spaces of finite games, therefore they seem unlikely to generalize to contin-
uous/separable games. For a survey of algorithms which compute equilibria of finite games,
see [17].

Another growing literature has been investigating the complexity of computing mixed
strategy Nash equilibria of finite games. Daskalakis, Goldberg, and Papadimitriou settle this
question for finite normal form games with four or more players, showing that the problem of
computing a single Nash equilibrium is PPAD-complete [6]. In essence this means that it is
computationally equivalent to a number of other fixed point problems which are believed to
be computationally difficult. These problems share the feature that a solution can be proven
to exist, but the known proofs of existence are inefficient; for more about the complexity class
PPAD, see [18]. Daskalakis and Papadimitriou later improve this result by proving PPAD-
completeness in the case of three players [7]. Chen and Deng also prove this independently
[4] and complete this line of work by proving PPAD-completeness for two players [5]. In this
literature, there has been no work on continuous games.

Our work is most closely related to the work of Lipton et al. [16], who consider two-
player finite games and provide bounds on the support of equilibrium strategies using the
ranks of the payoff matrices of the players. Since finite games are a special case of separable
games, our results on the cardinality of the support of equilibrium strategies generalize theirs
by allowing for an arbitrary finite number of players as well as infinite strategy sets and a
broader class of payoff functions.

Lipton et al. also investigate computing approximate equilibria in two-player finite games
and present the first algorithm for computing approximate equilibria which is quasi-polynomial
in the number of strategies [16]. The rank of a separable game measures the complexity of
the payoffs, and in the case of a finite game it is bounded by the number of strategies.
Therefore in finite games the complexity of the payoffs and the complexity of the strategy
spaces do not vary independently; the effects of these parameters on the running time of
algorithms cannot be distinguished. However, for games with infinite strategy sets the rank
can be varied arbitrarily while the strategy set is held fixed. This allows us to construct
an algorithm for computing approximate equilibria in two-player separable games with fixed
(infinite) strategy spaces and show that it has a polynomial dependence on the rank. Since
we assume the strategy space is fixed and consider general separable games rather than only
finite games, our algorithm is not directly comparable to that of Lipton et al. [16]. Nonethe-
less it is interesting on its own since no algorithm for computing approximate equilibria of
finite games is known which has polynomial dependence on the complexity of the game.

Our work is also related to that of Kannan and Theobald, who study a different notion of
rank in two-player finite games [12]. They take an algorithmic perspective and view zero-sum
games as the simplest type of games. To generalize these, they propose a hierarchy of classes
of two-player finite games in which the rank of the sumR+C of the payoff matrices is bounded
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by a constant k; the case k = 0 corresponds to zero-sum games. For fixed k, they show that
approximate Nash equilibria of two-player finite games can be computed in time polynomial
in the description length for the game. This algorithm relies on an approximation result
for quadratic programming due to Vavasis [25] which depends on the polyhedral structure
of the problem. It is conceivable that this technique may apply to polynomial games if the
approximation technique can be extended to this more general algebraic setting, but we do
not do so here.

The rest of this paper is organized as follows. In Section 2 we define separable games and
prove some of their basic properties. Then in Section 3 we define the rank of a continuous
game and use this definition to bound the cardinality of the support of Nash equilibria.
We present a characterization theorem for separable games which in particular shows that
within the class of continuous games, the low-rank results in this paper cannot be extended
past separable games. We provide a simple formula for computing the rank of arbitrary
separable games, which we specialize for finite and polynomial games. In Section 4 we discuss
computation of Nash equilibria and approximate equilibria. We close with conclusions and
directions for future work.

2 Basic Theory of Separable Games

We first introduce the notational conventions and the basic terminology used throughout the
paper. Subscripts refer to players, while superscripts are reserved for other indices, rather
than exponents. If Sj are sets for j = 1, . . . , n then S = Πn

j=1Sj and S−i = Πj 6=iSj. The
n-tuple s and the (n− 1)-tuple s−i are formed from the points sj similarly. Given a subset
S of a vector space, we use the notation spanS, aff S, convS, and S to denote the span,
affine hull, convex hull, and closure of the set S, respectively. We denote the transpose of a
matrix M by M ′.

Definition 2.1. An n-player continuous game consists of a pure strategy space Ci
which is a nonempty compact metric space and a continuous utility or payoff function
ui : C → R for each player i = 1, . . . , n. Throughout, ∆i will denote the space of Borel
probability measures σi over Ci, referred to as mixed strategies, and the ui will be extended
from C to ∆ by expectation, defining

ui(σ) =

∫
C

ui(s)dσ,

where the n-tuple σ = (σ1, . . . , σn) is identified with the product measure σ1 × · · · × σn.

Definition 2.2. An n-player separable game is an n-player continuous game with utility
functions ui : C → R taking the form

ui(s) =

m1∑
j1=1

· · ·
mn∑
jn=1

aj1···jni f j11 (s1) · · · f jnn (sn), (1)
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where aj1···jni ∈ R and the f ji : Ci → R are continuous. Two important special cases are
the finite games in which the Ci are finite and the ui are arbitrary and the polynomial
games in which the Ci are compact intervals in R and the ui are polynomials in the sj.

When it is convenient to do so, and always for polynomial games, we will begin the
summations in (1) at ji = 0. For polynomial games we can then use the convention that
f ji (si) = sji , where the superscript on the right hand side denotes an exponent rather than
an index.

Example 2.3. Consider a two player game with C1 = C2 = [−1, 1] ⊂ R. Letting x and y
denote the pure strategies of players 1 and 2, respectively, we define the utility functions

u1(x, y) = 2xy + 3y3 − 2x3 − x− 3x2y2 and

u2(x, y) = 2x2y2 − 4y3 − x2 + 4y + x2y.
(2)

This is a polynomial game, and we will return to it periodically to apply the results presented.
In particular, we will show using classical techniques that this game must have a Nash
equilibrium in which each player randomizes over a set of cardinality at most 5. We will
then apply our new rank results (see Theorem 3.3) to reduce this bound to 2 for the first
player and 4 for the second player.

Let Vi denote the space of all finite-valued signed measures (henceforth simply called
measures) on Ci, which can be identified with the dual of the Banach space C(Ci) of all
continuous real-valued functions on Ci endowed with the sup norm. Throughout, we will use
the weak* topology on Vi, which is the weakest topology such that whenever f : Ci → R is
a continuous function, σ 7→

∫
fdσ is a continuous linear functional on Vi.

We can extend the utility functions of a continuous game to all of V in the same way they
are extended from C to ∆, yielding a multilinear functional on V . For a fixed separable game
we can extend the f ji from Ci to Vi similarly, yielding the so-called generalized moment
functionals, so (1) holds with s replaced by σ ∈ V . In polynomial games f ji (si) = sji so
the generalized moment functionals are just the classical moment functionals. We will abuse
notation and identify the elements of Ci with the atomic measures in ∆i, so Ci ⊆ ∆i ⊂ Vi.
Note that convCi and spanCi are the set of all finitely supported probability measures
and the set of all finitely supported finite signed measures, respectively. The following are
standard results (see [20] and [21]).

Proposition 2.4.

(a) The sets Ci and ∆i are weak* compact.

(b) The weak* closures of convCi and spanCi are ∆i and Vi, respectively.

(c) The weak* topology makes Vi a Hausdorff topological vector space.

We next define three notions of equivalence between two measures, which allow us to
exhibit simplifications in the structure of Nash equilibria in separable games.
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Definition 2.5. Two measures σi, τi ∈ Vi are

• moment equivalent if f ji (σi) = f ji (τi) for all j (representation-dependent and only
defined for separable games).

• payoff equivalent if uj(σi, s−i) = uj(τi, s−i) for all j and all s−i ∈ C−i.

• almost payoff equivalent if uj(σi, s−i) = uj(τi, s−i) for all j 6= i and all s−i ∈ C−i.

Note that in separable games moment equivalence implies payoff equivalence and in all
continuous games payoff equivalence implies almost payoff equivalence. Since the f ji and uj
are linear and multilinear functionals on Vi and V , respectively, these equivalence relations
can be expressed in terms of (potentially infinitely many) linear constraints on σi − τi.

Definition 2.6. Let 0 denote the zero measure in Vi and define

• Wi = {measures moment equivalent to 0},

• Xi = {measures payoff equivalent to 0},

• Yi = {measures almost payoff equivalent to 0}.

Then Wi ⊆ Xi ⊆ Yi, and σi − τi ∈ Xi if and only if σi is payoff equivalent to τi,
etc. Furthermore, the subspaces Xi and Yi are representation-independent and well-defined
for any continuous game, separable or not. Note that these subspaces are given by the
intersection of the kernels of (potentially infinitely many) continuous linear functionals, hence
they are closed.

We will analyze separable games by considering the quotients of Vi by these subspaces,
i.e. Vi mod these three equivalence relations. To avoid defining excessively many symbols
let ∆i/Wi denote the image of ∆i in Vi/Wi and so forth. For a concrete example of these
sets see the discussion at end of this section, and in particular Figure 1.

The following theorem presents a fundamental result about separable games. It shows
that regardless of the choices of the other players, each player is free to restrict his choice of
strategies to a particularly simple class of mixed strategies, namely those which only assign
positive probability to a finite number of pure strategies. Furthermore, a bound on the
number of strategies needed can be easily computed in terms of the structure of the game.
This theorem can be proven by a separating hyperplane argument as applied to zero-sum
separable games by Karlin [13], but here we give a new topological argument.

Theorem 2.7. In a separable game every mixed strategy σi is moment equivalent to a finitely-
supported mixed strategy τi with | supp(τi)| ≤ mi + 1. Moreover, if σi is countably-supported
τi can be chosen with supp(τi) ⊂ supp(σi).

Proof. Note that the map
fi : σi 7→

(
f 1
i (σi), . . . , f

mi
i (σi)

)
(3)
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is linear and continuous. Therefore

fi(∆i) = fi
(
convCi

)
⊆ fi(convCi) = conv fi(Ci) = conv fi(Ci) = fi(convCi) ⊆ fi(∆i).

The first three steps follow from Proposition 2.4, continuity of fi, and linearity of fi, respec-
tively. The next equality holds because conv fi(Ci) is compact, being the convex hull of a
compact subset of a finite-dimensional space. The final two steps follow from the linearity
of fi and the containment convCi ⊆ ∆i. Hence, we have

fi(∆i) = conv fi(Ci) = fi(convCi).

This shows that any mixed strategy is moment equivalent to a finitely-supported mixed
strategy. Applying Carathéodory’s theorem [2] to the set conv fi(Ci) ⊂ Rmi yields the
uniform bound. Since a countable convex combination of points in a bounded subset of Rmi

can always be written as a finite convex combination of at most mi + 1 of those points, the
final claim follows.

For the rest of the paper we will study the Nash equilibria of (nonzero-sum) separable
games, which are defined for arbitrary continuous games as follows.

Definition 2.8. A mixed strategy profile σ is a Nash equilibrium if ui(τi, σ−i) ≤ ui(σ)
for all i and all τi ∈ ∆i.

Combining Theorem 2.7 with Glicksberg’s result [10] that every continuous game has a
Nash equilibrium yields the following:

Corollary 2.9. Every separable game has a Nash equilibrium in which player i mixes among
at most mi + 1 pure strategies.

Example 2.3 (cont’d). Apply the standard definition of the f ji to the polynomial game with
payoffs given in (2). The set of moments ∆i/Wi

∼= fi(∆i) as described in Theorem 2.7 is
shown in Figure 1 with the zeroth moment omitted (it is identically unity). In this case the
set of moments is the same for both players. The space Vi/Wi = fi(Vi) is a four-dimensional
real vector space, and Figure 1 shows a subset of the projection of Vi/Wi onto its final three
coordinates. The set Ci/Wi = fi(Ci) of moments due to pure strategies is the curve traced
out by the vector (1, x, x2, x3) as x varies from −1 to 1. Since the first coordinate is omitted
in the figure, this can be seen as the sharp edge which goes from (−1, 1,−1) through (0, 0, 0)
to (1, 1, 1). As shown in the proof of Theorem 2.7, fi(∆i) is exactly the convex hull of this
curve.

For each player the range of the indices in (1) is 0 ≤ ji ≤ 3, so by Corollary 2.9, this game
has an equilibrium in which each player mixes among at most 4 + 1 = 5 pure strategies.
To produce this bound, we have not used any information about the payoffs except for
the degree of the polynomials. However, notice that there is extra structure here to be
exploited. For example, u2 depends on the expected value

∫
x2dσ1(x), but not on

∫
xdσ1(x)

or
∫
x3dσ1(x). In particular, player 2 is indifferent between the two strategies ±x of player 1
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Figure 1: The space fi(∆i) ∼= ∆i/Wi of possible moments for either player’s mixed strategy
under the payoffs given in (2) due to a measure σi on [−1, 1]. The zeroth moment, which is
identically unity, has been omitted.

for all x, insofar as this choice does not affect his payoff (though it does affect what strategy
profiles are equilibria). In the following section, we will present improved bounds on the
number of strategies played in an equilibrium which take these simplifications into account
in a systematic manner.

3 The Rank of a Continuous Game

In this section, we introduce the notion of the rank of a continuous game. We use this notion
to provide improved bounds on the cardinality of the support of the equilibrium strategies for
a separable game. We also provide a characterization theorem which states that a continuous
game has finite rank if and only if it is separable, thus showing that separable games are
the largest class of continuous games to which low-rank arguments apply (see subsection
3.2). We conclude this section by showing how to compute the rank of a separable game
in Subsection 3.3, which may be read independently of the section on the characterization
theorem.

Our main result on bounding the support of equilibrium strategies generalizes the fol-
lowing theorem of Lipton et al. [16] to arbitrary separable games, thereby removing the
two-player assumption and weakening the restriction that the strategy spaces be finite. The
proof given in [16] is essentially an algorithmic version of Carathéodory’s theorem. Here
we provide a shorter nonalgorithmic proof which illustrates some of the ideas to be used in

8



establishing the extended version of the theorem.

Theorem 3.1 (Lipton et al. [16]). Consider a two-player finite (i.e. bimatrix) game defined
by matrices R and C of payoffs to the row and column player, respectively. Let σ be a Nash
equilibrium of the game. Then there exists a Nash equilibrium τ which yields the same payoffs
to both players as σ, but in which the column player mixes among at most rankR + 1 pure
strategies and the row player mixes among at most rankC + 1 pure strategies.

Proof. Let r and c be probability column vectors corresponding to the mixed strategies of
the row and column players in the given equilibrium σ. Then the payoffs to the row and
column players are r′Rc and r′Cc. Since c is a probability vector, we can view Rc as a convex
combination of the columns of R. These columns all lie in the column span of R, which is a
vector space of dimension rankR. By Carathéodory’s theorem, we can therefore write any
convex combination of these vectors using only rankR+ 1 terms [2]. That is to say, there is
a probability vector d such that Rd = Rc, d has at most rankR + 1 nonzero entries, and a
component of d is nonzero only if the corresponding component of c was nonzero.

Since r was a best response to c and Rc = Rd, r is a best response to d. On the other
hand, since (r, c) was a Nash equilibrium c must have been a mixture of best responses to r.
But d only assigns positive probability to strategies to which c assigned positive probability.
Thus d is a best response to r, so (r, d) is a Nash equilibrium which yields the same payoffs
to both players as (r, c), and d only assigns positive probability to rankR+1 pure strategies.
Applying the same procedure to r we could find an s which only assigns positive probability
to rankC+1 pure strategies and such that (s, d) is a Nash equilibrium with the same payoffs
to both players as (r, c).

We will show in the following subsection that our extension of this theorem provides a
slightly tighter bound of rankR instead of rankR + 1 (respectively for C) in some cases,
depending on the structure of R and C. This can be seen directly from the proof given here.
We considered convex combinations of the columns of R and noted that these all lie in the
column span of R. In fact, they all lie in the affine hull of the set of columns of R. If this
affine hull does not include the origin, then it will have dimension rankR − 1. The rest of
the proof goes through using this affine hull instead of the column span, and so in this case
we get a bound of rankR on the number of strategies played with positive probability by
the row player. Alternatively, the dimension of the affine hull can be computed directly as
the rank of the matrix given by subtracting a fixed column of R from all the other columns
of R.

3.1 Bound on the Support of Equilibrium Strategies

By comparing the two-player case of (1) with the singular value decomposition for matrices,
separable games can be thought of as games of “finite rank.” Now we will define the rank of
a continuous game precisely and use it to give a bound on the cardinality of the support of
equilibrium strategies, generalizing Corollary 2.9 and Theorem 3.1. The primary tool will be
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the notion of almost payoff equivalence from Definition 2.5. In what follows, the dimension
of a set will refer to the dimension of its affine hull.

Definition 3.2. The rank of a continuous game is defined to be the n-tuple ρ = (ρ1, . . . , ρn)
where ρi = dim ∆i/Yi. A game is said to have finite rank if ρi <∞ for all i.

Since Wi ⊆ Yi and Vi/Wi is finite-dimensional for any separable game (see the proof of
Theorem 2.7), it is clear that separable games have finite rank, and furthermore that ρi ≤ mi

for all i. In subsection 3.2 we show that all games of finite rank are also separable, so the
two conditions are equivalent. Unlike the mi, the rank is defined for all continuous games
and is representation-independent.

We define the rank of a game in terms of almost payoff equivalence of mixed strategies
by means of the subspace Yi. This notion of equivalence between two strategies for a given
player means that no matter what the other players do, their payoffs will not enable them
to distinguish these two strategies. The use of this equivalence relation reflects the fact that
at a (mixed strategy) Nash equilibrium, the payoff to a player is equalized among all pure
strategies which he plays with positive probability. Therefore the player is free to switch to
any other mixed strategy supported on the same pure strategies, as long as the change does
not affect the other players, and the resulting strategy profile will remain a Nash equilibrium.

Using the rank of a game, Corollary 2.9 and Theorem 3.1 can now be improved as follows:

Theorem 3.3. Given an equilibrium σ of a separable game with rank ρ, there exists an
equilibrium τ such that each player i mixes among at most ρi+ 1 pure strategies and ui(σ) =
ui(τ).

If dim ∆i/Xi = 1 and the metric space Ci is connected, then this bound can be improved
so that τi is a pure strategy.

Proof. By Theorem 2.7, we can assume without loss of generality that each player’s mixed
strategy σi is finitely supported. Fix i, let ψi : Vi → Vi/Yi denote the canonical projection
transformation and let σi =

∑
j λ

jsji be a finite convex combination of pure strategies. By
linearity of ψi we have

ψi(σi) =
∑
j

λjψi(s
j
i ).

Carathéodory’s theorem states that (renumbering the sji and adding some zero terms if
necessary) we can write

ψi(σi) =

ρi∑
j=0

µjψi(s
j
i ),

a convex combination potentially with fewer terms. Let τi =
∑ρi

j=0 µ
jsji . Then ψi(σi) =

ψi(τi). Since σ was a Nash equilibrium, and σi is almost payoff equivalent to τi, σj is a best
response to (τi, σ−i,j) for all j 6= i. On the other hand σi was a mixture among best responses
to the mixed strategy profile σ−i, so the same is true of τi, making it a best response to σ−i.
Thus (τi, σ−i) is a Nash equilibrium.
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If dim ∆i/Xi = 1 and Ci is connected, then Ci/Xi is connected, compact, and one-
dimensional, i.e. it is an interval. Therefore it is convex, so ∆i/Xi = conv(Ci/Xi) = Ci/Xi.
This implies that there exists a pure strategy si which is payoff equivalent to σi, so we may
take τi = si and (τi, σ−i) is a Nash equilibrium.

Beginning with this equilibrium and repeating the above steps for each player in turn
completes the construction of τ and the final statement of the theorem is clear.

While the preceding theorem was the original reason for our choice of the definition of
ρ, the definition turns out to have other interesting properties which we study below. The
following alternative characterization of the rank of a continuous game is more concrete than
the definition given above. This theorem simplifies the proofs of many rank-related results
and will be applied to the problem of computing the rank of separable games in Subsection
3.3.

Theorem 3.4. The rank ρi for player i in a continuous game is given by the smallest ri
such that there exist continuous functions gki : Ci → R and hki,j : C−i → R which satisfy

uj(s) = h0
i,j(s−i) +

ri∑
k=1

gki (si)h
k
i,j(s−i) (4)

for all s ∈ C and j 6= i (ρi =∞ if and only if no such representation exists). Furthermore,
the minimum value of ri = ρi is achieved by functions gki (si) of the form uj(si, s−i) for some
s−i ∈ C−i and j 6= i and functions hki,j(s−i) of the form

∫
uj(·, s−i)dσi for some σi ∈ Vi.

Proof. Throughout the proof we will automatically extend any functions gki : Ci → R to
all of Vi in the canonical way. Suppose we are given a representation of the form (4). Let
gi : Ci → Rri be defined by gi(si) = (g1

i (si), . . . , g
ri
i (si)). By definition, ρi is the dimension of

∆i/Yi. Let Zi denote the subspace of Vi parallel to ∆i, i.e. the space of all signed measures
σi such that

∫
σi = 0. Then ρi = dimZi/(Zi ∩ Yi). By (4) any signed measure which is in

Zi and in ker gi is almost payoff equivalent to the zero measure, so Zi ∩ ker gi ⊆ Zi ∩ Yi and
therefore

ρi = dimZi/(Zi ∩ Yi) ≤ dimZi/(Zi ∩ ker gi) = dim gi(Zi) ≤ ri.

It remains to show that if ρi <∞ then there exists a representation of the form (4) with
ri = ρi. Recall that Yi is defined to be

Yi =
⋂
j 6=i

s−i∈C−i

keruj(·, s−i)

where uj(·, s−i) is interpreted as a linear functional on Vi. Since ρi = dimZi/(Zi∩Yi), we can
choose ρi linear functionals, call them g1

i , . . . , g
ρi

i , from the collection of functionals whose
intersection forms Yi, such that Zi ∩ Yi = Zi ∩ ker gi, where gi = (g1

i , . . . , g
ρi

i ) as above. We
cannot choose a smaller collection of linear functionals and achieve Zi ∩ Yi = Zi ∩ ker gi,
because ρi = dimZi/(Zi∩Yi). Note that Zi∩ker gi = ker (1, g1

i , . . . , g
ρi

i ) where 1 is the linear
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functional 1(σi) =
∫
dσi. Therefore no functional can be removed from the list (1, gi) =

(1, g1
i , . . . , g

ρi

i ) without affecting the kernel of the transformation (1, gi), so the functionals
1, g1

i , . . . , g
ρi

i are linearly independent.
This means that any of the linear functionals uj(·, s−i) (the intersection of whose kernels

yields Yi) can be written uniquely as a linear combination of the functionals 1, g1
i , . . . , g

ρi

i .
That is to say, there are unique functions hki,j such that (4) holds with the functions gki
constructed here and ri = ρi. The gki are continuous by construction, so to complete the
proof we must show that the functions hki,j are continuous as well. Since the functionals
1, g1

i , . . . , g
ρi

i are linearly independent, we can choose a measure σki ∈ Vi which makes the
kth of these functionals evaluate to unity and all the others zero. Substituting these values
into (4) shows that hki,j(s−i) =

∫
uj(·, s−i)dσki . Since uj is continuous, hki,j is therefore also

continuous.

Note that in the statement of Theorem 3.4 we have distinguished the component h0
i,j(s−i)

in uj. We have shown that this distinction follows from the definition of ρi, but there is also
an intuitive game theoretic reason why this separation is natural. As mentioned above, ρi
is intended to capture the number of essential degrees of freedom that player i has in his
choice of strategy when playing a Nash equilibrium. Theorems 3.3 and 3.4 together show
that player i only needs to take the other players’ utilities into account to compute this
number, and not his own. But player i is only concerned with the other players’ utilities
insofar as his own strategic choice affects them. The function h0

i,j(s−i) captures the part of
player j’s utility which does not depend on player i’s strategy, so whether this function is
zero or not it has no effect on the rank ρi.

Also note that while Theorem 3.4 gives decompositions of the utilities in terms of the ρi,
it is not in general possible to summarize all these decompositions by writing the utilities
in the form (1) with mi = ρi for all i. For a trivial counterexample, consider any game in
which ui(s) = h0

i (s−i) is independent of si for all i. Then Theorem 3.4 implies that ρi = 0
for all i, but the utilities are nonzero so we cannot take mi = 0 in (1) for any i.

We close this subsection with an application. If a submatrix is formed from a matrix
by “sampling,” i.e. selecting a subset of the rows and columns, the rank of the submatrix
is bounded by the rank of the original matrix. Theorem 3.4 shows that the same is true of
continuous games, because a factorization of the form (4) for a game immediately provides a
factorization for any smaller game produced by restricting the players’ choices of strategies.

Corollary 3.5. Let ({Ci}, {ui}) be a continuous game with rank ρ and C̃i be a nonempty
compact subset of Ci for each i, with ũi = ui

∣∣
C̃

. Let ρ̃ denote the rank of the game

({C̃i}, {ũi}). Then we have ρ̃i ≤ ρi for all i.

Definition 3.6. The game ({C̃i}, {ũi}) in Corollary 3.5 is called a sampled game or a
sampled version of ({Ci}, {ui}).

Note that if we take C̃i to be finite for each i, then the sampled game is a finite game. If
the original game is separable and hence has finite rank, then Corollary 3.5 yields a uniform
bound on the complexity of finite games which can arise from this game by sampling. This
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fact is applied to the problem of computing approximate equilibria in Section 4 below.
Finally, note that there are other kinds of bounds on the cardinality of the support of
equilibria (e.g., for special classes of polynomial games as studied by Karlin [13]) which do
not share this sampling property.

3.2 Characterizations of separable games

In this section we present a characterization theorem for separable games. We also provide
an example that shows that the assumptions of this theorem cannot be weakened.

Theorem 3.7. For a continuous game, the following are equivalent:

1. The game is separable.

2. The game has finite rank.

3. For each player i, every countably supported mixed strategy σi is almost payoff equiva-
lent to a finitely supported mixed strategy τi with supp(τi) ⊂ supp(σi).

To prove that finite rank implies separability we repeatedly apply Theorem 3.4. The
proof that the technical condition (3) implies (2) uses a linear algebraic argument to show
that spanCi/Yi is finite dimensional and then a topological argument along the lines of the
proof of Theorem 2.7 to show that Vi/Yi is also finite dimensional.

After the proof of Theorem 3.7 we will give an explicit example of a game in which
all mixed strategies are payoff equivalent to pure strategies, but for which the containment
supp(τi) ⊂ supp(σi) in condition (3) fails. In light of Theorem 3.7 this will show that the
constructed game is nonseparable and that the containment supp(τi) ⊂ supp(σi) cannot be
dropped from condition (3), even if the other assumptions are strengthened.

Proof. (1 ⇒ 3) This was proven in Theorem 2.7.
(1 ⇒ 2) This follows from the proof of Theorem 2.7.
(2 ⇒ 1) We will prove this by induction on the number of players n. When n = 1 the

statement is trivial and the case n = 2 follows immediately from Theorem 3.4. Suppose
we have an n-player continuous game with ρi < ∞ for all i and that we have proven that
ρi <∞ for all i implies separability for (n− 1)-player games. By fixing any signed measure
σn ∈ Vn we can form an (n − 1)-player continuous game from the given game by removing
the nth player and integrating all payoffs of players i < n with respect to σn, yielding a new
game with payoffs ũi(s−n) =

∫
ui(sn, s−n)dσn(sn).

From the definition of Yi, it is clear that Yi ⊆ Ỹi for all 1 ≤ i < n. Therefore ρ̃i =
dim ∆i/Ỹi ≤ dim ∆i/Yi = ρi < ∞ for 1 ≤ i < n so the (n − 1)-player game has finite rank.
By the induction hypothesis, that means that the function ũ1 is a separable function of the
strategies s1, . . . , sn−1. Theorem 3.4 states that there exist continuous functions gkn and hkn,1
such that

u1(s) = h0
n,1(s−n) +

ρn∑
k=1

gkn(sn)hkn,1(s−n) (5)
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where hkn,1 =
∫
u1(s)dσ

k
n for some σkn ∈ Vn. Therefore by choosing σn appropriately we can

make ũ1 = hkn,1 for any k, so hkn,1(s−n) is a separable function of s1, . . . , sn−1 for all k. By
(5) u1 is a separable function of s1, . . . , sn. The same argument works for all the ui so the
given game is separable and the general case is true by induction.

(3 ⇒ 2) Let ψi : Vi → Vi/Yi be the canonical projection transformation. First we will
prove that spanψi(Ci) is finite dimensional. It suffices to prove that for every countable
subset C̃i = {s1

i , s
2
i , . . .} ⊆ Ci, the set ψi(C̃i) is linearly dependent. Let {pk} be a sequence

of positive reals summing to unity. Define the mixed strategy

σi =
∞∑
k=1

pkski .

By assumption there exists an M and q1, . . . , qM ≥ 0 summing to unity such that

ψi(σi) = ψi

(
M∑
k=1

qkski

)
=

M∑
k=1

qkψi(s
k
i ).

Let α =
∞∑

k=M+1

pk > 0 and define the mixed strategy

τi =
∞∑

k=M+1

pk

α
ski .

Applying the assumption again shows that there exist N and rM+1, . . . , rN such that

ψi(τi) = ψi

(
N∑

k=M+1

rkski

)
=

N∑
k=M+1

rkψi(s
k
i ).

Therefore

M∑
k=1

pkψi(s
k
i ) = ψi

(
M∑
k=1

pkski

)
= ψi(σi − ατi) = ψi(σi)− αψi(τi)

=
M∑
k=1

qkψi(s
k
i )−

N∑
k=M+1

αrkψi(s
k
i ),

and rearranging terms shows that
∑M

k=1(p
k − qk)ψi(s

k
i ) +

∑N
k=M+1 αr

kψi(s
k
i ) = 0. Also∑M

k=1(p
k − qk) = −α < 0, so pk − qk 6= 0 for some k. Therefore ψi(C̃i) is linearly dependent,

so spanψi(Ci) is finite dimensional.
Since Yi is closed, Vi/Yi is a Hausdorff topological vector space under the quotient topol-

ogy and ψi is continuous with respect to this topology [21]. Being finite dimensional, the
subspace spanψi(Ci) ⊆ Vi/Yi is also closed [21]. Thus we have

Vi/Yi = ψi(Vi) = ψi
(
spanCi

)
⊆ ψi(spanCi) = spanψi(Ci) = spanψi(Ci) ⊆ Vi/Yi

14



where the first step is by definition, the second follows from Proposition 2.4, the next two
are by continuity and linearity of ψi, and the final two are because spanψi(Ci) is a closed
subspace of Vi/Yi. Therefore ρi = dim ∆i/Yi ≤ dimVi/Yi = dim spanψi(Ci) <∞.

The following counterexample shows that the containment supp τi ⊂ suppσi is a nec-
essary part of condition 3 in Theorem 3.7 by showing that there exists a nonseparable
continuous game in which every mixed strategy is payoff equivalent to a pure strategy.

Example 3.8. Consider a two-player game with C1 = C2 = [0, 1]ω, the set of all infinite
sequences of reals in [0, 1], which forms a compact metric space under the metric

d(x, x′) = sup
i

|xi − x′i|
i

.

Define the utilities

u1(x, y) = u2(x, y) =
∞∑
i=1

2−ixiyi.

To show that this is a continuous game we must show that u1 is continuous. Assume
d(x, x′), d(y, y′) ≤ δ. Then |xi − x′i| ≤ δi and |yi − y′i| ≤ δi, so

|u1(x,y)− u1(x
′, y′)| =

∣∣∣∣∣
∞∑
i=1

2−i(xiyi − x′iy′i)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=1

2−i(xiyi − x′iyi + x′iyi − x′iy′i)

∣∣∣∣∣
≤

∞∑
i=1

2−i (yi|xi − x′i|+ x′i|yi − y′i|)

≤
∞∑
i=1

2−i(2δi) =

(
2
∞∑
i=1

2−ii

)
δ.

Thus u1 = u2 is continuous (in fact Lipschitz), making this a continuous game.
Let σ and τ be mixed strategies for the two players. By the Tonelli-Fubini theorem,

u1(σ, τ) =

∫
u1d(σ × τ) =

∞∑
i=1

2−i
(∫

xidσ

)(∫
yidτ

)
.

Thus σ is payoff equivalent to the pure strategy
(∫

x1dσ,
∫
x2dσ, . . .

)
∈ C1 and similarly for

τ , so this game has the property that every mixed strategy is payoff equivalent to a pure
strategy.

Finally we will show that this game is nonseparable. Let ei ∈ C1 be the element having
component i equal to unity and all other components zero. Let {pi} be a sequence of positive
reals summing to unity and define the probability distribution σ =

∑∞
i=1 pie

i ∈ ∆1. Suppose
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σ were almost payoff equivalent to some mixture among finitely many of the ei, call it
τ =

∑∞
i=1 qie

i where qi = 0 for i greater than some fixed N . Let eN+1 be the strategy for
player 2. Then the payoff if player 1 plays σ is

u2(σ, eN+1) =

∫
2−(N+1)xN+1dσ = 2−(N+1)pN+1.

Similarly, if he chooses τ the payoff is 2−(N+1)qN+1. Since pN+1 > 0 and qN+1 = 0, this
contradicts the assumption that σ and τ are almost payoff equivalent. Thus condition 3 of
Theorem 3.7 does not hold, so this game is not separable.

Therefore the condition that all mixed strategies be payoff equivalent to finitely supported
strategies does not imply separability, even if a uniform bound on the size of the support is
assumed. Hence the containment supp τi ⊂ suppσi cannot be removed from condition 3 of
Theorem 3.7.

3.3 Computing the rank of a separable game

In this subsection we construct a formula for the rank of an arbitrary separable game and
then specialize it to get formulas for the ranks of polynomial and finite games. For clarity of
presentation we first prove a bound on the rank of a separable game which uses an argument
that is similar to but simpler than the argument for the exact formula. While it is possible
to prove all the results in this section directly from the definition ρi = dim ∆i/Yi, we will
give proofs based on the alternative characterization in Theorem 3.4 because they are easier
to understand and provide more insight into the structure of the problem.

Given a separable game in the standard form (1), construct a matrix Si,j for players i
and j which has mi columns and Πk 6=imk rows and whose elements are defined as follows.
Label each row with an (n − 1)-tuple (l1, . . . , li−1, li+1, . . . , ln) such that 1 ≤ lk ≤ mk; the
order of the rows is irrelevant. Label the columns li = 1, . . . ,mi. Each entry of the matrix
then corresponds to an n-tuple (l1, . . . , ln). The entry itself is given by the coefficient al1···lnj

in the utility function uj.
Let fi(si) denote the column vector whose components are f 1

i (si), . . . , f
mi
i (si) and f−i(s−i)

denote the row vector whose components are the products f l11 (s1) · · · f li−1

i−1 (si−1)f
li+1

i+1 (si+1) · · · f lnn (sn)
ordered in the same way as the (n − 1)-tuples (l1, . . . , li−1, li+1, . . . , ln) were ordered above.
Then uj(s) = f−i(s−i)Si,jfi(si).

Example 3.9. We introduce a new example game to clarify the subtleties of computing ranks
when there are more than two players; we will return to Example 2.3 later. Consider the
three player polynomial game with strategy spaces C1 = C2 = C3 = [−1, 1] and payoffs

u1(x, y, z) = 1 + 2x+ 3x2 + 2yz + 4xyz + 6x2yz

+ 3y2z2 + 6xy2z2 + 9x2y2z2

u2(x, y, z) = 7 + 2x+ 3x2 + 2y + 4xy + 6x2y

+ 3z2 + 6xz2 + 9x2z2

u3(x, y, z) = −z − 2xz − 3x2z − 2yz − 4xyz − 6x2yz

− 3yz2 − 6xyz2 − 9x2yz2

(6)
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where x, y, and z are the strategies of player 1, 2, and 3, respectively. Order the functions
f lk so that f1(x) =

[
1 x x2

]′
and similarly for f2 and f3 with x replaced by y and z,

respectively. If we wish to write down the matrices S1,2 and S1,3 we must choose an order for
the pairwise products of the functions f l2 and f l3. Here we will choose the order f−1(y, z) =[
1 y y2 z yz y2z z2 yz2 y2z2

]
. We can write down the desired matrices immediately

from the given utilities.

S1,2 =



7 2 3
2 4 6
0 0 0
0 0 0
0 0 0
0 0 0
3 6 9
0 0 0
0 0 0


, S1,3 =



0 0 0
0 0 0
0 0 0
−1 −2 −3
−2 −4 −6
0 0 0
0 0 0
−3 −6 −9
0 0 0


This yields u2(x, y, z) = f−1(y, z)S1,2f1(x) and u3(x, y, z) = f−1(y, z)S1,3f1(x) as claimed.

Define Si to be the matrix with mi columns and (n− 1)Πj 6=imj rows which consists of all
the matrices Si,j for j 6= i stacked vertically (in any order). In the example above, S1 would
be the 18× 3 matrix obtained by placing S1,2 above S1,3 on the page.

Theorem 3.10. The rank of a separable game is bounded by ρi ≤ rankSi.

Proof. Using any of a variety of matrix factorization techniques (e.g. the singular value
decomposition), we can write Si as

Si =

rankSi∑
k=1

vkwk

for some column vectors vk and row vectors wk. The vectors vk will have length (n−1)Πj 6=imj

since that is the number of rows of Si. Because of the definition of Si, we can break each vk

into n − 1 vectors of length Πj 6=imj, one for each player except i, and let vkj be the vector
corresponding to player j. Then we have

Si,j =

rankSi∑
k=1

vkjw
k

for all j 6= i. Define the linear combinations gki (si) = wkfi(si) and hki,j = f−i(s−i)v
k
j , which

are obviously continuous functions. Then

uj(s) = f−i(s−i)Si,jfi(si) =

rankSi∑
k=1

gki (si)h
k
i,j(s−i)

for all s ∈ C and j 6= i, so ρi ≤ rankSi by Theorem 3.4.
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Example 3.11. To demonstrate the power of the bound in Theorem 3.10 we will use it to give
an immediate proof of Theorem 3.1. Consider any two-player finite game, where the first
player chooses rows and the second player chooses columns. Let Ci = {1, . . . ,mi} for i = 1, 2
and let R and C be the matrices of payoffs to the row and column players, respectively. We
can then define f li (si) to be unity if si = l and zero otherwise. This gives

u1(s1, s2) = f1(s1)
′Rf2(s2)

u2(s1, s2) = f2(s2)C
′f1(s1)

so S1 = C ′ and S2 = R. Therefore by Theorem 3.10, ρ1 ≤ rankS1 = rankC and ρ2 ≤
rankS2 = rankR. Substituting these bounds into Theorem 3.3 yields Theorem 3.1, so we
have in fact generalized the results of Lipton et al. [16].

It is easy to see that there are cases in which the bound in Theorem 3.10 is not tight.
For example, this will be the case (for generic coefficients aj1···jni ) if mi ≥ 2 for each i and fki
is the same function for all k.

Fortunately we can use a technique similar to the one used above to compute ρi exactly
instead of just computing a bound. To do so we need to write the utilities in a special form.
First we add the new function f 1

i (si) ≡ 1 to the list of functions for player i appearing in the
separable representation of the game if this function does not already appear, relabeling the
other fki as necessary. Next we consider the set of functions {fkj } for each player j in turn
and choose a maximal linearly independent subset. For players j 6= i any such subset will
do; for player i we must include the function which is identically unity in the chosen subset.
Finally we rewrite the utilities in terms of these linearly independent sets of functions. This
is possible because all of the fkj are linear combinations of those which appear in the maximal
linearly independent sets.

From now on we will assume the utilities are in this form and that f 1
i (si) ≡ 1. Let Si,j

and Si be the matrices Si,j and Si defined above, where the bar denotes the fact that we have
put the utilities in this special form. Let Ti be the matrix Si with its first column removed.
Note that this column corresponds to the function f 1

i (si) ≡ 1 which we have distinguished
above, and therefore represents the components of the utilities of players j 6= i which do not
depend on player i’s choice of strategy. As mentioned in the note following Theorem 3.4,
these components don’t affect the rank. This is exactly the reason that we must remove the
first column from Si in order to compute ρi. We will prove that ρi = rankTi, but first we
need a lemma.

Lemma 3.12. If the functions f 1
j (sj), . . . , f

mj

j (sj) are linearly independent for all j, then the

set of all Πn
j=1mj product functions of the form fk11 (s1) · · · fkn

n (sn) is a linearly independent
set.

Proof. It suffices to prove this in the case n = 2, because the general case follows by induction.
We prove the n = 2 case by contradiction. Suppose the set were linearly dependent. Then
there would exist λk1k2 not all zero such that

m1∑
k1=1

m2∑
k2=1

λk1k2f
k1
1 (s1)f

k2
2 (s2) = 0 (7)
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for all s ∈ C. Choose l1 and l2 such that λl1l2 6= 0. By the linear independence assumption
there exists a finitely supported signed measure σ2 such that

∫
fk2 dσ2 is unity for k = l2 and

zero otherwise. Integrating (7) with respect to σ2 yields

m1∑
k1=1

λk1l2f
k1
1 (s1) = 0,

contradicting the linear independence assumption for f 1
1 , . . . , f

m1
1 .

Theorem 3.13. If the representation of a separable game satisfies f 1
i ≡ 1 and the set

{f 1
j , . . . , f

mj

j } is linearly independent for all j then the rank of the game is ρi = rankTi.

Proof. The proof that ρi ≤ rankTi follows essentially the same argument as the proof of
Theorem 3.10. We use the singular value decomposition to write Ti as

Ti =

rankTi∑
k=1

vkwk

for some column vectors vk and row vectors wk. The vectors vk will have length (n−1)Πj 6=imj

since that is the number of rows of Si. Let v0 be the first column of Si, which was removed
from Si to form Ti. Because of the definition of Ti and Si, we can break each vk into n− 1
vectors of length Πj 6=imj, one for each player except i, and let vkj be the vector corresponding
to player j. Putting these definitions together we get

Si,j = v0
j

[
1 0 · · · 0

]
+

rankTi∑
k=1

vkj
[
0 wk

]
.

Define the linear combinations gki (si) =
[
0 wk

]
fi(si) and hki,j(s−i) = f−i(s−i)v

k
j , which

are obviously continuous functions. Then

uj(s) = f−i(s−i)Si,jfi(si) = h0
i,j(s−i) +

rankTi∑
k=1

gki (si)h
k
i,j(s−i)

for all s ∈ C and j 6= i, so ρi ≤ rankTi by Theorem 3.4.
To prove the reverse inequality, choose continuous functions gki (si) and hki,j(s−i) such that

uj(s) = h0
i,j(s−i) +

ρi∑
k=1

gki (si)h
k
i,j(s−i)

holds for all s ∈ C and j 6= i. By Theorem 3.4 we can choose these so that gki (si) is of the
form uj(si, s−i) for some s−i ∈ C−i, j 6= i and hki,j(s−i) is of the form

∫
uj(·, s−i)dσi for some

σi ∈ Vi. Substituting these conditions into equation (1) defining the form of a separable
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game shows that gki (si) = wkfi(si) for some row vectors wk and hki,j = f−i(s−i)v
k
j for some

column vectors vkj . Define w0 =
[
1 0 · · · 0

]
. Then

uj(s) =

ρi∑
k=0

f−i(s−i)
′vkjw

kfi(si)

for all s ∈ C and j 6= i.
This expresses uj(s) as a linear combination of products of the form fk11 (s1) · · · fkn

n (sn).
By assumption the sets {f 1

j , . . . , f
mj

j } are linearly independent for all j, and therefore the

set of products of the form fk11 (s1) · · · fkn
n (sn) is linearly independent by Lemma 3.12. Thus

the expression of uj(s) as a linear combination of these products is unique.
But we also have uj(s) = f−i(s−i)

′Si,jfi(si) by definition of Si,j, so uniqueness implies
that Si,j =

∑ρi

k=0 v
k
jw

k. Let vk be the vector of length (n−1)Πj 6=imj formed by concatenating

the vkj in the obvious way. Then Si =
∑ρi

k=0 v
kwk. Let w̃k be wk with its first entry removed.

By definition of Ti we have Ti =
∑ρi

k=0 v
kw̃k. But w0 is the standard unit vector with a 1 in

the first coordinate, so w̃0 is the zero vector and we may therefore remove the k = 0 term
from the sum. Thus Ti =

∑ρi

k=1 v
kw̃k, which proves that rankTi ≤ ρi.

As corollaries of Theorem 3.13 we obtain formulas for the ranks of polynomial and finite
games.

Corollary 3.14. Consider a game with polynomial payoffs

ui(s) =

m1−1∑
j1=0

· · ·
mn−1∑
jn=0

aj1···jni sj11 · · · sjnn (8)

and compact strategy sets Ci ⊂ R which satisfy the cardinality condition |Ci| > mi for all i.
Then Ti is Si with its first column removed and ρi = rankTi.

Proof. Linear independence of the f li follows from the cardinality condition and we have
f 0
i ≡ 1, so Theorem 3.13 applies.

Example 2.3 (cont’d). Applying this formula to the utilities in (2) shows that ρ1 = 1 and
ρ2 = 3.

Example 3.9 (cont’d). Applying this formula to the utilities in (6) shows that in this case
ρ1 = 1 and ρ2 = ρ3 = 2.

Corollary 3.15. Consider an n-player finite game with strategy sets Ci = {1, . . . ,mi} and
payoff as1···sn

i to player i if the players play strategy profile (s1, . . . , sn). The utilities can be
written as

ui(s) =

m1∑
j1=1

· · ·
mn∑
jn=1

aj1···jni f j11 (s1) · · · f jnn (sn)

where f li (si) is unity if si = l and zero otherwise. Let Si be the matrix for player i as defined
above and let c1, . . . , cmi

be the columns of Si. Then we may take Ti =
[
c2 − c1 · · · cmi

− c1
]

and ρi = rankTi.

20



Proof. If we replace f 1
i with the function which is identically unity then the linear indepen-

dence assumption on the f lk will still be satisfied, so we can apply Theorem 3.13. After this
replacement, the coefficients in the new separable representation for the game are

aj1···jnk =

{
aj1···jnk if ji = 1,

aj1···jnk − aj1···ji−11ji+1···jn
k if ji 6= 1.

Therefore if c1, . . . , cmi
are the columns of Si from the original representation of the game

we get Si =
[
c1 c2 − c1 · · · cmi

− c1
]
, so Ti is as claimed and an application of Theorem

3.13 completes the proof.

4 Computation of Nash Equilibria and Approximate

Equilibria

In this section, we study computation of exact and approximate Nash equilibria. We first
present an optimization formulation for the computation of (exact) Nash equilibria of general
separable games. We show that for two-player polynomial games, this formulation has a
biaffine objective function and linear matrix inequality constraints. We then present an
algorithm for computing approximate equilibria of two-player separable games with infinite
strategy sets which follows directly from the results on the rank of games given in Section 3
and compare it with known algorithms for finite games.

4.1 Computing Nash equilibria

The moments of an equilibrium can in principle be computed by nonlinear programming
techniques using the following generalization of the Nash equilibrium formulation presented
by Başar and Olsder [1]:

Proposition 4.1. The following optimization problem has optimal value zero and the vari-
ables x in any optimal solution are the moments of a Nash equilibrium strategy profile with
payoff pi to player i:

max
∑n

i=1 [vi(x)− pi]
s.t. xi ∈ ∆i/Wi = fi(∆i) for all i

vi(fi(si), x−i) ≤ pi for all i, all si ∈ Ci

The function fi is the moment function defined in (3) and vi is the payoff function on the
moment spaces defined by vi (f1(σ1), . . . , fn(σn)) = ui(σ).

Proof. The constraints imply that vi(x)−pi ≤ 0 for all i, so the objective function is bounded
above by zero. Given any n-tuple of moments x which form a Nash equilibrium, let pi = vi(x)
for all i. Then the objective function evaluates to zero and all the constraints are satisfied,
by definition of a Nash equilibrium. Therefore the optimal objective function value is zero
and it is attained at all Nash equilibria.
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Conversely suppose some feasible x and p achieve objective function value zero. Then
the condition vi(x)−pi ≤ 0 implies that vi(x) = pi for all i. Also, the final constraint implies
that player i cannot achieve a payoff of more than pi by unilaterally changing his strategy.
Therefore the moments x form a Nash equilibrium.

To compute equilibria by this method, we require an explicit description of the spaces
of moments ∆i/Wi. We also require a method for describing the payoff pi to player i if he
plays a best response to an m−i-tuple of moments for the other players.

While it seems doubtful that such descriptions could be found for arbitrary f ji , they do
exist for two-player polynomial games in which the pure strategy sets are intervals. In this
case they can be written in terms of linear matrix inequalities as in Parrilo’s treatment of the
zero-sum case [19]. This yields a problem with biaffine objective and linear matrix inequality
constraints.

Example 2.3 (cont’d). Directly solving this nonconvex problem with MATLAB’s fmincon

has proven error-prone, as there appear to be many local minima which are not global.
However, we were able to compute the equilibrium measures

σ1 = 0.5532δ(x+ 1) + 0.4468δ(x− 0.1149),

σ2 = δ(y − 0.7166)

(i.e. player 1 plays the pure strategy x = −1 with probability 0.5532 and so on) for the
payoffs in (2) by this method.

4.2 Computing ε-equilibria

The difficulties in computing equilibria by general nonconvex optimization techniques suggest
the need for more specialized systematic methods. As a step toward this, we present an
algorithm for computing approximate Nash equilibria of two-player separable games. There
are several possible definitions of approximate equilibrium, but here we will use:

Definition 4.2. A mixed strategy profile σ ∈ ∆ is an ε-equilibrium (ε ≥ 0) if

ui(si, σ−i) ≤ ui(σ) + ε

for all si ∈ Ci and i = 1, . . . , n.

For ε = 0, the definition of an ε-equilibrium reduces to that of a Nash equilibrium. We
consider computing an ε-equilibrium of separable games that satisfy the following assump-
tion:

Assumption 4.3.

• There are two players.

• The game is separable.
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• The utilities can be evaluated efficiently.

To simplify the presentation of our algorithm, we also adopt the following assumption:

Assumption 4.4.

• The strategy spaces are C1 = C2 = [−1, 1].

• The utility functions are Lipschitz.

In the description of the algorithm we will emphasize why Assumption 4.3 is needed for
our analysis. After presenting the algorithm we will discuss how Assumption 4.4 could be
relaxed.

Theorem 4.5. For ε > 0, the following algorithm computes an ε-equilibrium of a game
of rank ρ satisfying Assumptions 4.3 and 4.4 in time polynomial in 1

ε
for fixed ρ and time

polynomial in the components of ρ for fixed ε (for the purposes of asymptotic analysis of the
algorithm with respect to ρ the Lipschitz condition is assumed to be satisfied uniformly by the
entire class of games under consideration).

Algorithm 4.6. By the Lipschitz assumption there are real numbers L1 and L2 such that

|ui(si, s−i)− ui(s′i, s−i)| ≤ Li|si − s′i|

for all s−i ∈ C−i and i = 1, 2. Clearly this is equivalent to requiring the same inequality
for all σ−i ∈ ∆−i. Divide the interval Ci into equal subintervals of length no more than
2 ε
Li

; at most dLi

ε
e such intervals are required. Let C̃i be the set of center points of these

intervals, and construct a finite sampled game by restricting the strategy sets to the C̃i. Call
the resulting payoff matrices U1 and U2. Compute a Nash equilibrium of the sampled game.
To do so, iterate over all pairs of nonempty subsets S1 ⊆ C̃1 and S2 ⊆ C̃2 such that the
cardinality of Si is at most ρi + 1 for i = 1, 2. Let x1 and x2 be probability vectors indexed
by the elements of C̃1 and C̃2, respectively. For each such pair (S1, S2) we use the fact that
linear programs are polynomial-time solvable to find x1 and x2 such that the following linear
constraints are satisfied, or prove that no such vectors exist [3].

[x1U2]s2 ≥ [x1U2]t2 for all s2 ∈ S2, t2 ∈ C̃2

[U1x2]s1 ≥ [U1x2]t1 for all s1 ∈ S1, t1 ∈ C̃1

xi(si) ≥ 0 for all si ∈ Si, i = 1, 2

xi(si) = 0 for all si ∈ C̃i \ Si, i = 1, 2∑
si∈Si

xi(si) = 1 for i = 1, 2

(9)

(There are many redundant constraints here which could easily be removed, but we have
presented the constraints in this form for simplicity.) Any feasible point for any pair (S1, S2)
is a Nash equilibrium of the sampled game and an ε-equilibrium of the original game. The
algorithm will find at least one such point.
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Proof. For the purpose of analyzing the complexity of the algorithm we will view the Lip-
schitz constants as fixed, even as ρ varies. Let ũi be the payoffs of the sampled game and
suppose σ is a Nash equilibrium of the sampled game. Choose any si ∈ Ci and let s′i be an
element of C̃i closest to si, so |si − s′i| ≤ ε

Li
. Then

ui(si,σ−i)− ui(σ)

≤ ui(si, σ−i)− ui(s′i, σ−i) + ui(s
′
i, σ−i)− ui(σ)

≤ |ui(si, σ−i)− ui(s′i, σ−i)|+ ũi(s
′
i, σ−i)− ũi(σ)

≤ Li
ε

Li
+ 0 = ε

so σ is automatically an ε-equilibrium of the original separable game. Thus it will suffice to
compute a Nash equilibrium of the finite sampled game.

To do so, first compute or bound the rank ρ of the original separable game using Theorem
3.13 or 3.10. By Theorem 3.3 and Corollary 3.5, the sampled game has a Nash equilibrium
in which player i mixes among at most ρi + 1 pure strategies, independent of how large |C̃i|
is. The separability assumption is fundamental because without it we would not obtain this
uniform bound independent of |C̃i|. The number of possible choices of at most ρi + 1 pure
strategies from C̃i is

ρi+1∑
k=1

(
|C̃i|
k

)
≤
(
|C̃i|+ ρi
1 + ρi

)
=

(
|C̃i|+ ρi

|C̃i| − 1

)
,

which is a polynomial in |C̃i| ∝ 1
ε

for fixed ρ and a polynomial in the components of ρ for
fixed ε. This leaves the step of checking whether there exists an equilibrium σ for a given
choice of Si = supp(σi) ⊆ C̃i with |Si| ≤ ρi + 1 for each i, and if so, computing such an
equilibrium. Since the game has two players, the set of such equilibria for given supports is
described by a number of linear equations and inequalities which is polynomial in 1

ε
for fixed ρ

and polynomial in the components of ρ for fixed ε; these equations and inequalities are given
by (9). Since linear programs are polynomial-time solvable, we can find a feasible solution
to such inequalities or prove infeasibility in polynomial time. The two player assumption is
key at this step, because with more players the constraints would fail to be linear or convex
and we could no longer use a polynomial time linear programming algorithm.

Thus we can check all supports and find an ε-equilibrium of the sampled game in poly-
nomial time as claimed.

We will now consider weakening Assumption 4.4. The Lipschitz condition could be
weakened to a Hölder condition and the same proof would work, but it seems that we must
require some quantitative bound on the speed of variation of the utilities in order to bound
the running time of the algorithm. Also, the strategy space could be changed to any compact
set which can be efficiently sampled, e.g. a box in Rn. However, for the purpose of asymptotic
analysis of the algorithm, the proof here only goes through when the Lipschitz constants and
strategy space are fixed. A more complex analysis would be required if the strategy space
were allowed to vary with ρ, for example.
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It should be noted that the requirement that the strategy space be fixed for asymptotic
analysis means that Theorem 4.5 does not apply to finite games, at least not if the number
of strategies is allowed to vary. For the sake of comparison and completeness we state the
best known ε-equilibrium algorithm for finite games below.

Theorem 4.7 (Lipton et al. [16]). There exists an algorithm to compute an ε-equilibrium of
an m-player finite game with n strategies per player which is polynomial in 1

ε
for fixed m and

n, polynomial in m for fixed n and ε, and quasipolynomial in n for fixed ε and m (assuming
the payoffs of the games are uniformly bounded).

In the case of two-player separable games which we have considered, the complexity of
the payoffs is captured by ρ, which is bounded by the cardinality of the strategy spaces in
two-player finite games. Therefore in finite games the complexity of the payoffs and the
complexity of the strategy spaces are intertwined, whereas in games with infinite strategy
spaces they are decoupled. The best known algorithm for finite games stated in Theorem 4.7
has quasipolynomial dependence on the complexity of the game. Our algorithm is interesting
because it has polynomial dependence on the complexity of the payoffs when the strategy
spaces are held fixed. In finite games this type of asymptotic analysis is not possible due
to the coupling between the two notions of complexity of a game, so a direct comparison
between Theorem 4.5 and Theorem 4.7 cannot be made.

5 Conclusions

We have shown that separable games provide a natural setting for the study of games with
payoffs satisfying a low-rank condition. This level of abstraction allows the low-rank results
of Lipton et al. [16] to be extended to infinite strategy spaces and multiple players. Since the
rank of a separable game gives a bound on the cardinality of the supports of equilibria for any
sampled version of that separable game, approximate equilibria can be computed in time
polynomial in 1

ε
by discretizing the strategy spaces and applying standard computational

techniques for low-rank games.
Other types of low-rank conditions have been studied for finite games, for example Kan-

nan and Theobald have considered the condition that the sum of the payoff matrices be
low-rank [12]. It is likely that that the discretization techniques used here can be applied
in an analogous way to yield results about computing approximate equilibria of continuous
games when the sum of the payoffs of the players is a separable function.

There also exist many computational techniques for finite games which do not make
low-rank assumptions. It may be possible to extend some of these techniques directly to
separable games to yield algorithms for computing exact equilibria of separable games. Such
an extension would likely require an explicit description of the moment spaces in terms of
inequalities rather than the description given above as the convex hull of the set of moments
due to pure strategies. In the case of two-player polynomial games, such an explicit de-
scription is known to be possible using linear matrix inequalities and has been applied to
zero-sum polynomial games by Parrilo [19]. While the lack of polyhedral structure in the
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moment spaces would most likely prohibit the use of a Lemke-Howson type algorithm, a
variety of other finite game algorithms may be extendable to this setting; see McKelvey and
McLennan for a survey of such algorithms [17].

Finally, there exist a variety of other solution concepts for strategic form games which may
be amenable to analysis and computation in the case of separable games, and in particular
in polynomial games. Preliminary results on computation of correlated equilibria appear
in [23, 24]. For a correlated equilibrium version of the rank bounds on Nash equilibria of
separable games presented above, see [23]. We leave the extension to other solution concepts,
in particular iterated elimination of strictly dominated strategies, for future work.
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